z-logo
Premium
The Era of Digital Health: A Review of Portable and Wearable Affinity Biosensors
Author(s) -
Tu Jiaobing,
TorrenteRodríguez Rebeca M.,
Wang Minqiang,
Gao Wei
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201906713
Subject(s) - wearable computer , wearable technology , nanotechnology , electronics , biosensor , computer science , mhealth , aptamer , human–computer interaction , data science , materials science , embedded system , health care , engineering , electrical engineering , biology , economic growth , economics , genetics
Digital health facilitated by wearable/portable electronics and big data analytics holds great potential in empowering patients with real‐time diagnostics tools and information. The detection of a majority of biomarkers at trace levels in body fluids using mobile health (mHealth) devices requires bioaffinity sensors that rely on “bioreceptors” for specific recognition. Portable point‐of‐care testing (POCT) bioaffinity sensors have demonstrated their broad utility for diverse applications ranging from health monitoring to disease diagnosis and management. In addition, flexible and stretchable electronics‐enabled wearable platforms have emerged in the past decade as an interesting approach in the ambulatory collection of real‐time data. Herein, the technological advancements of mHealth bioaffinity sensors evolved from laboratory assays to portable POCT devices, and to wearable electronics, are synthesized. The involved recognition events in the mHealth affinity biosensors enabled by bioreceptors (e.g., antibodies, DNAs, aptamers, and molecularly imprinted polymers) are discussed along with their transduction mechanisms (e.g., electrochemical and optical) and system‐level integration technologies. Finally, an outlook of the field is provided and key technological bottlenecks to overcome identified, in order to achieve a new sensing paradigm in wearable bioaffinity platforms.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here