z-logo
Premium
Quantum Dot Light‐Emitting Transistors—Powerful Research Tools and Their Future Applications
Author(s) -
Kahmann Simon,
Shulga Artem,
Loi Maria A.
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201904174
Subject(s) - quantum dot , materials science , transistor , optoelectronics , nanotechnology , light emission , field effect transistor , field (mathematics) , engineering physics , physics , mathematics , quantum mechanics , voltage , pure mathematics
Abstract In this progress report, the recent work in the field of light‐emitting field‐effect transistors (LEFETs) based on colloidal quantum dots (CQDs) as emitters is highlighted. These devices combine the possibility of electrical switching, as known from field‐effect transistors, with the possibility of light emission in a single device. The properties of field‐effect transistors and the prerequisites of LEFETs are reviewed, before motivating the use of colloidal quantum dots for light emission. Recent reports on these quantum dot light‐emitting field‐effect transistors (QDLEFETs) include both materials emitting in the near infrared and the visible spectral range—underlining the great potential and breadth of applications for QDLEFETs. The way in which LEFETs can further the understanding of the CQD material properties—their photophysics as well as the carrier transport through films—is discussed. In addition, an overview of technology areas offering the potential for large impact is provided.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here