z-logo
Premium
Hole Transport Materials Based on 6,12‐Dihydroindeno[1,2‐b]fluorine with Different Periphery Groups: A New Strategy for Dopant‐Free Perovskite Solar Cells
Author(s) -
Liu Fan,
Wu Fei,
Tu Zongxiao,
Liao Qiuyan,
Gong Yanbin,
Zhu Linna,
Li Qianqian,
Li Zhen
Publication year - 2019
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201901296
Subject(s) - dopant , glovebox , materials science , perovskite (structure) , planar , fluorine , doping , optoelectronics , chemical engineering , nanotechnology , organic chemistry , computer science , metallurgy , chemistry , computer graphics (images) , engineering
Although several hole‐transporting materials (HTMs) have been designed to obtain perovskite solar cells (PSCs) devices with high performance, the dopant‐free HTMs for efficient and stable PSCs remain rare. Herein, a rigid planar 6,12‐dihydroindeno[1,2‐b]fluorine (IDF) core with different numbers of bulky periphery groups to construct dopant‐free HTMs of IDF‐SFXPh, IDF‐DiDPA, and IDF‐TeDPA is modified. Thanks to the contributions of the planar IDF core and the twisted SFX periphery groups, the dopant‐free IDF‐SFXPh‐based PSCs device achieves a device performance of 17.6%, comparable to the doped 2,2′,7,7′‐tetrakis( N , N ‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD)‐based device (17.6%), with much enhanced device stability under glovebox and ambient conditions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here