Premium
Highly Stretchable and Wearable Thermotherapy Pad with Micropatterned Thermochromic Display Based on Ag Nanowire–Single‐Walled Carbon Nanotube Composite
Author(s) -
Kim Hyunmin,
Seo Minjeong,
Kim JongWoo,
Kwon DoKyun,
Choi SongEe,
Kim Jin Woong,
Myoung JaeMin
Publication year - 2019
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201901061
Subject(s) - materials science , thermochromism , carbon nanotube , polydimethylsiloxane , rubbing , nanotechnology , composite material , optoelectronics , composite number , graphene , electronic skin , stretchable electronics , electronics , chemistry , organic chemistry
Due to the increasing interest in wearable devices, flexible and stretchable film heaters have been widely studied, as alternatives to heaters with conventional rigid shapes. Herein, a highly stretchable film heater (SFH) based on the silver nanowire (Ag NW)–single‐walled carbon nanotube composite with a thermochromic display on a polydimethylsiloxane (PDMS) substrate is successfully fabricated. The SFH shows excellent electrical conductivity, high mechanical stretchability, and outstanding reliability, with no significant degradation after 10 000 stretching cycles under tensile strain. The SFH can be heated to the target temperature (≈60 °C) within 30 s at a low applied voltage. In addition, a thermochromic display is fabricated to help prevent the risk of low‐temperature burns. Red (R), green (G), and blue (B) thermochromic microparticles (TMPs) are synthesized using drop‐based microfluidic technology. The TMPs show RGB colors at room temperature but change to a white color above a certain temperature. The TMPs are arrayed into a PDMS stencil on the basis of their particle sizes using the rubbing technique. The micropatterned thermochromic display, which functions as a visual alarm, combined with the SFH can pave the way for the development of thermotherapy pads for next‐generation wearable devices in the medical field.