z-logo
Premium
Multidimension‐Controllable Synthesis of Ant Nest‐Structural Electrode Materials with Unique 3D Hierarchical Porous Features toward Electrochemical Applications
Author(s) -
Miao Fujun,
Lu Na,
Zhang Peng,
Zhang Zhenyi,
Shao Guosheng
Publication year - 2019
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201808994
Subject(s) - materials science , porosity , supercapacitor , electrode , nanotechnology , electrolyte , electrochemistry , capacitance , ant colony , composite material , computer science , ant colony optimization algorithms , artificial intelligence , chemistry
Abstract Hierarchical porous materials (HPM) have been widely used to enhance electrochemical performance in different fields of application, since their porous structures benefit electrolyte infiltration and ion diffusion. However, the realization of multidimension‐controllable synthesis of HPM, including material category, material components, supporting substrates, as well as pore sizes/distributions, is still a huge challenge. Herein, a novel concept is proposed, for the first time, on the geometry structure of HPM bioinspired by natural ant nests, which features 3D interlaced and well‐interconnected porous structures. Moreover, a facile and universal approach is developed to the multidimension‐controllable synthesis of ant nest‐structural HPM. Further investigation shows that the in situ construction of carbon‐based ant nests onto porous current collectors to fabricate the integrated electrode for supercapacitors could induce nearly 70% and 45% enhancement on the specific capacitance compared to the common powder and freestanding materials, respectively. Moreover, this synthesis route can be facilely extended to obtain the ant nest‐structural CuO x , which exhibits fivefold enhancement in sensitivity for glucose detection. Such biomimetic hierarchical porous architectures are of great significance in the field of electrochemical applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here