Premium
Single‐Atom Fe‐N x ‐C as an Efficient Electrocatalyst for Zinc–Air Batteries
Author(s) -
Han Junxing,
Meng Xiaoyi,
Lu Liang,
Bian Juanjuan,
Li Zhipeng,
Sun Chunwen
Publication year - 2019
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201808872
Subject(s) - electrocatalyst , materials science , catalysis , nanocages , electrochemistry , battery (electricity) , open circuit voltage , cathode , metal , chemical engineering , electrolyte , inorganic chemistry , chemistry , electrode , metallurgy , voltage , organic chemistry , power (physics) , physics , quantum mechanics , engineering
Highly efficient non‐noble metal electrocatalysts are vital for metal–air batteries and fuel cells. Herein, a noble‐metal–free single‐atom Fe‐N x ‐C electrocatalyst is synthesized by incorporating Fe‐Phen complexes into the nanocages in situ during the growth of ZIF‐8, followed by pyrolysis at 900 °C under inert atmosphere. Fe‐Phen species provide both Fe 2+ and the organic ligand (Phen) simultaneously, which play significant roles in preparing single‐atom catalysts. The obtained Fe‐N x ‐C exhibits a half‐wave potential of 0.91 V for the oxygen reduction reaction, higher than that of commercial Pt/C (0.82 V). As a cathode catalyst for primary zinc–air batteries (ZABs), the battery shows excellent electrochemical performances in terms of the high open‐circuit voltage (OCV) of 1.51 V and a high power density of 96.4 mW cm −2 . The rechargeable ZAB with Fe‐N x ‐C catalyst and the alkaline electrolyte shows a remarkable cycling performance for 300 h with an initial round‐trip efficiency of 59.6%. Furthermore, the rechargeable all‐solid‐state ZABs with the Fe‐N x ‐C catalyst show high OCV of 1.49 V, long cycle life for 120 h, and foldability. The single‐atom Fe‐N x ‐C electrocatalyst may function as a promising catalyst for various metal–air batteries and fuel cells.