z-logo
Premium
Single‐Atom Fe‐N x ‐C as an Efficient Electrocatalyst for Zinc–Air Batteries
Author(s) -
Han Junxing,
Meng Xiaoyi,
Lu Liang,
Bian Juanjuan,
Li Zhipeng,
Sun Chunwen
Publication year - 2019
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201808872
Subject(s) - electrocatalyst , materials science , catalysis , nanocages , electrochemistry , battery (electricity) , open circuit voltage , cathode , metal , chemical engineering , electrolyte , inorganic chemistry , chemistry , electrode , metallurgy , voltage , organic chemistry , power (physics) , physics , quantum mechanics , engineering
Highly efficient non‐noble metal electrocatalysts are vital for metal–air batteries and fuel cells. Herein, a noble‐metal–free single‐atom Fe‐N x ‐C electrocatalyst is synthesized by incorporating Fe‐Phen complexes into the nanocages in situ during the growth of ZIF‐8, followed by pyrolysis at 900 °C under inert atmosphere. Fe‐Phen species provide both Fe 2+ and the organic ligand (Phen) simultaneously, which play significant roles in preparing single‐atom catalysts. The obtained Fe‐N x ‐C exhibits a half‐wave potential of 0.91 V for the oxygen reduction reaction, higher than that of commercial Pt/C (0.82 V). As a cathode catalyst for primary zinc–air batteries (ZABs), the battery shows excellent electrochemical performances in terms of the high open‐circuit voltage (OCV) of 1.51 V and a high power density of 96.4 mW cm −2 . The rechargeable ZAB with Fe‐N x ‐C catalyst and the alkaline electrolyte shows a remarkable cycling performance for 300 h with an initial round‐trip efficiency of 59.6%. Furthermore, the rechargeable all‐solid‐state ZABs with the Fe‐N x ‐C catalyst show high OCV of 1.49 V, long cycle life for 120 h, and foldability. The single‐atom Fe‐N x ‐C electrocatalyst may function as a promising catalyst for various metal–air batteries and fuel cells.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom