z-logo
Premium
Over 30% External Quantum Efficiency Light‐Emitting Diodes by Engineering Quantum Dot‐Assisted Energy Level Match for Hole Transport Layer
Author(s) -
Song Jiaojiao,
Wang Ouyang,
Shen Huaibin,
Lin Qingli,
Li Zhaohan,
Wang Lei,
Zhang Xintong,
Li Lin Song
Publication year - 2019
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201808377
Subject(s) - quantum dot , materials science , optoelectronics , light emitting diode , quantum efficiency , diode , luminescence , band offset , brightness , optics , valence band , physics , band gap
In the study of hybrid quantum dot light‐emitting diodes (QLEDs), even for state‐of‐the‐art achievement, there still exists a long‐standing charge balance problem, i.e., sufficient electron injection versus inefficient hole injection due to the large valence band offset of quantum dots (QDs) with respect to the adjacent carrier transport layer. Here the dedicated design and synthesis of high luminescence Zn 1− x Cd x Se/ZnSe/ZnS QDs is reported by precisely controlled shell growth, which have matched energy level with the adjacent hole transport layer in QLEDs. As emitters, such Zn 1− x Cd x Se‐ based QLEDs exhibit peak external quantum efficiencies (EQE) of up to 30.9%, maximum brightness of over 334 000 cd m −2 , very low efficiency roll‐off at high current density (EQE ≈25% @ current density of 150 mA cm −2 ), and operational lifetime extended to ≈1 800 000 h at 100 cd m −2 . These extraordinary performances make this work the best among all solution‐processed QLEDs reported in literature so far by achieving simultaneously high luminescence and balanced charge injection. These major advances are attributed to the combination of an intermediate ZnSe layer with an ultrathin ZnS outer layer as the shell materials and surface modification with 2‐ethylhexane‐1‐thiol, which can dramatically improve hole injection efficiency and thus lead to more balanced charge injection.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here