Premium
A Double‐Layer Mechanochromic Hydrogel with Multidirectional Force Sensing and Encryption Capability
Author(s) -
Zhu Qingdi,
Vliet Krystyn,
HoltenAndersen Niels,
Miserez Ali
Publication year - 2019
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201808191
Subject(s) - materials science , self healing hydrogels , luminescence , layer (electronics) , transmittance , fabrication , optoelectronics , nanotechnology , medicine , alternative medicine , pathology , polymer chemistry
Hydrogel‐based soft mechanochromic materials that display colorimetric changes upon mechanical stimuli have attracted wide interest in sensors and display device applications. A common strategy to produce mechanochromic hydrogels is through photonic structures, in which mechanochromism is obtained by strain‐dependent diffraction of light. Here, a distinct concept and simple fabrication strategy is presented to produce luminescent mechanochromic hydrogels based on a double‐layer design. The two layers contain different luminescent species—carbon dots and lanthanide ions—with overlapped excitation spectra and distinct emission spectra. The mechanochromism is rendered by strain‐dependent transmittance of the top‐layer, which regulates light emission from the bottom‐layer to control the overall hydrogel luminescence. An analytical model is developed to predict the initial luminescence color and color changes as a function of uniaxial strain. Finally, this study demonstrates proof‐of‐concept applications of the mechanochromic hydrogel for pressure and contact force sensors as well as for encryption devices.