Premium
Atomic Ni Anchored Covalent Triazine Framework as High Efficient Electrocatalyst for Carbon Dioxide Conversion
Author(s) -
Lu Chenbao,
Yang Jian,
Wei Shice,
Bi Shuai,
Xia Ying,
Chen Mingxi,
Hou Yang,
Qiu Ming,
Yuan Chris,
Su Yuezeng,
Zhang Fan,
Liang Haiwei,
Zhuang Xiaodong
Publication year - 2019
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201806884
Subject(s) - electrocatalyst , materials science , faraday efficiency , electrochemical reduction of carbon dioxide , porphyrin , catalysis , carbon monoxide , density functional theory , covalent bond , triazine , nanotechnology , chemical engineering , photochemistry , electrochemistry , chemistry , electrode , computational chemistry , organic chemistry , polymer chemistry , engineering
Electrochemically driven carbon dioxide (CO 2 ) conversion is an emerging research field due to the global warming and energy crisis. Carbon monoxide (CO) is one key product during electroreduction of CO 2 ; however, this reduction process suffers from tardy kinetics due to low local concentration of CO 2 on a catalyst's surface and low density of active sites. Herein, presented is a combination of experimental and theoretical validation of a Ni porphyrin‐based covalent triazine framework (NiPor‐CTF) with atomically dispersed NiN 4 centers as an efficient electrocatalyst for CO 2 reduction reaction (CO 2 RR). The high density and atomically distributed NiN 4 centers are confirmed by aberration‐corrected high‐angle annular dark field scanning transmission electron microscopy and extended X‐ray absorption fine structure. As a result, NiPor‐CTF exhibits high selectivity toward CO 2 RR with a Faradaic efficiency of >90% over the range from −0.6 to −0.9 V for CO conversion and achieves a maximum Faradaic efficiency of 97% at −0.9 V with a high current density of 52.9 mA cm −2 , as well as good long‐term stability. Further calculation by the density functional theory method reveals that the kinetic energy barriers decreasing for *CO 2 transition to *COOH on NiN 4 active sites boosts the performance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom