Premium
Tuning Hole Transport Layer Using Urea for High‐Performance Perovskite Solar Cells
Author(s) -
Elbohy Hytham,
Bahrami Behzad,
Mabrouk Sally,
Reza Khan Mamun,
Gurung Ashim,
Pathak Rajesh,
Liang Mao,
Qiao Qiquan,
Zhu Kai
Publication year - 2019
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201806740
Subject(s) - pedot:pss , materials science , perovskite (structure) , polystyrene sulfonate , urea , chemical engineering , layer (electronics) , nanotechnology , organic chemistry , chemistry , engineering
Interface engineering is critical to the development of highly efficient perovskite solar cells. Here, urea treatment of hole transport layer (e.g., poly(3,4‐ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS)) is reported to effectively tune its morphology, conductivity, and work function for improving the efficiency and stability of inverted MAPbI 3 perovskite solar cells (PSCs). This treatment has significantly increased MAPbI 3 photovoltaic performance to 18.8% for the urea treated PEDOT:PSS PSCs from 14.4% for pristine PEDOT:PSS devices. The use of urea controls phase separation between PEDOT and PSS segments, leading to the formation of a unique fiber‐shaped PEDOT:PSS film morphology with well‐organized charge transport pathways for improved conductivity from 0.2 S cm −1 for pristine PEDOT:PSS to 12.75 S cm −1 for 5 wt% urea treated PEDOT:PSS. The urea‐treatment also addresses a general challenge associated with the acidic nature of PEDOT:PSS, leading to a much improved ambient stability of PSCs. In addition, the device hysteresis is significantly minimized by optimizing the urea content in the treatment.