Premium
Magnesium Anodes with Extended Cycling Stability for Lithium‐Ion Batteries
Author(s) -
Zhang Zailei,
Zhao Man,
Xia Mengyang,
Qi Ruijie,
Liu Mingyang,
Nie Jinhui,
Wang Zhong Lin,
Lu Xianmao
Publication year - 2019
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201806400
Subject(s) - anode , materials science , electrochemistry , cycling , electrode , lithium (medication) , chemical engineering , cathode , stack (abstract data type) , magnesium , composite number , composite material , metallurgy , electrical engineering , medicine , chemistry , archaeology , computer science , engineering , history , programming language , endocrinology
Magnesium as a promising alloy‐type anode material for lithium‐ion batteries features both high theoretical specific capacity (2150 mAh g −1 ) and stack energy density (1032 Wh L −1 ). However, the poor cycling performance of Mg‐based anodes severely limits their application, mainly because high‐impedance films can grow easily on the surface of Mg and cause diminished electrochemical activity. As a result, the capacities of reported Mg anodes fade quickly in less than 100 cycles. To improve the stability of Mg anodes, 3D Cu@Mg@C structures are prepared by depositing Mg/C composite on 3D Cu current collectors. The resulting 3D Cu@Mg@C anodes can deliver an initial capacity of 1392 mAh g −1 . With a second‐cycle capacity of 1255 mAh g −1 , 91% can be retained after 1000 cycles at 0.5 C. When cycled at 2 C, the initial capacity can be maintained for 4000 cycles. This remarkably improved cycling performance can be attributed to both the 3D structure and the embedded carbon layers of the 3D Cu@Mg@C electrodes that facilitate electrical contact and prevent the growth of high‐impedance films during cycling. With 3D Cu@Mg@C anodes and LiFePO 4 cathodes, full cells are assembled and charging by a rotating triboelectric nanogenerator that can harvest mechanical energy is demonstrated.