z-logo
Premium
Perfluorocarbon‐Loaded and Redox‐Activatable Photosensitizing Agent with Oxygen Supply for Enhancement of Fluorescence/Photoacoustic Imaging Guided Tumor Photodynamic Therapy
Author(s) -
Hu DanRong,
Zhong Lin,
Wang MengYao,
Li HaoHuan,
Qu Ying,
Liu QingYa,
Han Ruxia,
Yuan LiPing,
Shi Kun,
Peng JinRong,
Qian ZhiYong
Publication year - 2019
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201806199
Subject(s) - photodynamic therapy , singlet oxygen , tumor hypoxia , materials science , nanoparticle , conjugated system , fluorescence lifetime imaging microscopy , phototoxicity , fluorescence , photochemistry , oxygen , chemistry , biophysics , nanotechnology , medicine , organic chemistry , polymer , biochemistry , surgery , physics , quantum mechanics , in vitro , composite material , biology , radiation therapy
The wide clinical application of photodynamic therapy (PDT) is hampered by poor water solubility, low tumor selectivity, and nonspecific activation of photosensitizers, as well as tumor hypoxia which is common for most solid tumors. To overcome these limitations, tumor‐targeting, redox‐activatable, and oxygen self‐enriched theranostic nanoparticles are developed by synthesizing chlorin e6 (Ce6) conjugated hyaluronic acid (HA) with reducible disulfide bonds (HSC) and encapsulating perfluorohexane (PFH) within the nanoparticles (PFH@HSC). The fluorescence and phototoxicity of PFH@HSC nanoparticles are greatly inhibited by a self‐quenching effect in an aqueous environment. However, after accumulating in tumors through passive and active tumor‐targeting, PFH@HSC appear to be activated from “OFF” to “ON” in photoactivity by the redox‐responsive destruction of the vehicle's structure. In addition, PFH@HSC can load oxygen within lungs during blood circulation, and the oxygen dissolved in PFH is slowly released and diffuses over the entire tumor, finally resulting in remarkable tumor hypoxia relief and enhancement of PDT efficacy by generating more singlet oxygen. Taking advantage of the excellent imaging performance of Ce6, the tumor accumulation of PFH@HSC can be monitored by fluorescent and photoacoustic imaging after intravenous administration into tumor‐bearing mice. This PFH@HSC nanoparticle might have good potential for dual imaging‐guided PDT in hypoxic solid tumor treatment.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here