z-logo
Premium
Supercolloidal Spinners: Complex Active Particles for Electrically Powered and Switchable Rotation
Author(s) -
Shields Charles Wyatt,
Han Koohee,
Ma Fuduo,
Miloh Touvia,
Yossifon Gilad,
Velev Orlin D.
Publication year - 2018
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201803465
Subject(s) - dielectrophoresis , electrokinetic phenomena , rotation (mathematics) , electric field , electrohydrodynamics , materials science , electric potential energy , rotation around a fixed axis , nanotechnology , physics , energy (signal processing) , classical mechanics , microfluidics , computer science , quantum mechanics , artificial intelligence
A class of supercolloidal particles that controllably spin about their central axis in AC electric fields is reported. The rational design of these “microspinners” enables their rotation in a switchable manner, which gives rise to several interesting and programmable behaviors. It is shown that due to their complex shape and discrete metallic patches on their surfaces, these microspinners convert electrical energy into active motion via the interplay of four mechanisms at different electric field frequency ranges. These mechanisms of rotation include (in order of increasing frequency): electrohydrodynamic flows, reversed electrohydrodynamic flows, induced charge electrophoresis, and self‐dielectrophoresis. As the primary mechanism powering their motion transitions from one phenomenon to the next, these microspinners display three directional spin inversions (i.e., from clockwise to anticlockwise, or vice versa). To understand the mechanisms involved, this experimental study is coupled with scaling analyses. Due to their frequency‐switchable rotation, these microspinners have potential for applications such as interlocking gears in colloidal micromachines. Moreover, the principles used to power their switchable motion can be extended to design other types of supercolloidal particles that harvest electrical energy for motion via multiple electrokinetic mechanisms.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here