z-logo
Premium
Efficient 4,4′,4″‐tris(3‐methylphenylphenylamino)triphenylamine (m‐MTDATA) Hole Transport Layer in Perovskite Solar Cells Enabled by Using the Nonstoichiometric Precursors
Author(s) -
Liu Chunyu,
Zhang Dezhong,
Li Zhiqi,
Zhang Xinyuan,
Shen Liang,
Guo Wenbin
Publication year - 2018
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201803126
Subject(s) - triphenylamine , perovskite (structure) , materials science , passivation , molar ratio , layer (electronics) , iodide , chemical engineering , tris , energy conversion efficiency , inorganic chemistry , optoelectronics , nanotechnology , organic chemistry , chemistry , catalysis , biochemistry , engineering
To overcome the drawbacks of the acidic and hygroscopic nature of the poly(3,4‐ethylenedio‐xythiophene):poly(styrenesulfonate) hole transport layer (HTL), the p‐type polymeric hole transport materials have attracted great attention and have been applied into perovskite solar cells. Here, a starburst amine molecule 4,4′,4″‐tris(3‐methylphenylphenylamino)triphenylamine (m‐MTDATA) without any additive is demonstrated as an effective hole transport material in perovskite solar cells. Meanwhile, considering the different surface affinity of precursor's composition on m‐MTDATA, the influence of the molar ratios between lead iodine (PbI 2 ) and methylammonium iodide in precursor solution on the perovskite characteristics and device performance is investigated in‐depth. Ultimately, an enhanced efficiency of 17.73% and a high fill factor of 79.6% are achieved, which attribute to the strong passivation effect of traps and small resistance loss from appropriate unreacted PbI 2 left in the perovskite layer. This work not only provides a remarkable HTL, but also reveals that the adjustment of precursor ratio is necessary for the one‐step solution approach, because the affinities of precursor's composition may be different with the underlying transport layers.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here