Premium
Combining 3D Printing with Electrospinning for Rapid Response and Enhanced Designability of Hydrogel Actuators
Author(s) -
Chen Tingting,
Bakhshi Hadi,
Liu Li,
Ji Jian,
Agarwal Seema
Publication year - 2018
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201800514
Subject(s) - electrospinning , materials science , 3d printing , actuator , self healing hydrogels , nanotechnology , nanofiber , composite material , polymer science , polymer , polymer chemistry , computer science , artificial intelligence
Abstract Porous structures have emerged as a breakthrough of shape‐morphing hydrogels to achieve a rapid response. However, these porous actuators generally suffer from a lack of complexity and diversity in obtained 3D shapes. Herein, a simple yet versatile strategy is developed to generate shape‐morphing hydrogels with both fast deformation and enhanced designability in 3D shapes by combining two promising technologies: electrospinning and 3D printing. Elaborate patterns are printed on mesostructured stimuli‐responsive electrospun membranes, modulating in‐plane and interlayer internal stresses induced by swelling/shrinkage mismatch, and thus guiding morphing behaviors of electrospun membranes to adapt to changes of the environment. With this strategy, a series of fast deformed hydrogel actuators are constructed with various distinctive responsive behaviors, including reversible/irreversible formations of 3D structures, folding of 3D tubes, and formations of 3D structures with multi low‐energy states. It is worth noting that although poly( N ‐isopropyl acrylamide) is chosen as the model system in the present research, our strategy is applicable to other stimuli‐responsive hydrogels, which enriches designs of rapid deformed hydrogel actuators.