Premium
A Simple and Versatile Pathway for the Synthesis of Visible Light Photoreactive Nanoparticles
Author(s) -
Delafresnaye Laura,
Zaquen Neomy,
Kuchel Rhian P.,
Blinco James P.,
Zetterlund Per B.,
BarnerKowollik Christopher
Publication year - 2018
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201800342
Subject(s) - tetrazole , nanoparticle , materials science , miniemulsion , polymerization , photochemistry , surface modification , combinatorial chemistry , polymer chemistry , chemical engineering , organic chemistry , chemistry , nanotechnology , polymer , engineering , composite material
This work pioneers the design of visible (415 nm) and UV‐B light (300 nm) reactive nanoparticles via radical polymerization in aqueous heterogeneous media based on methyl methacrylate (MMA) and unique acrylates bearing tetrazole functionalities in a simple and straightforward two step reaction. Stable colloidal nanoparticles with an average diameter of 150 nm and inherent tetrazole functionality (varying from 2.5 to 10 wt% relative to MMA) are prepared via one‐pot miniemulsion polymerization. In a subsequent step, fluorescent pyrazoline moieties serving as linkage points are generated on the nanoparticles by either photoinduced nitrile imine‐mediated tetrazole‐ene cycloaddition (NITEC) or nitrile imine carboxylic acid ligation (NICAL) in water, thus enabling the particles as fluorescent tracers. Through in‐depth molecular surface analysis, it is demonstrated that the photoreactive nanoparticles undergo ligation to a variety of substrates bearing functionalities including maleimides, acrylates, or carboxylic acids, illustrating the versatility of the particle modification process. Critically, the unique ability of the photoreactive nanoparticles to be activated with visible light allows for their decoration with UV light–sensitive molecules. Herein, the ligation of folic acid—a vitamin prone to degradation under UV light—to the photoreactive nanoparticles using visible light is exemplified, demonstrating the synthetic power of our photoreactive fluorescent nanoparticle platform technology.