z-logo
Premium
2D/2D Heterojunction of Ultrathin MXene/Bi 2 WO 6 Nanosheets for Improved Photocatalytic CO 2 Reduction
Author(s) -
Cao Shaowen,
Shen Baojia,
Tong Tong,
Fu Junwei,
Yu Jiaguo
Publication year - 2018
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201800136
Subject(s) - materials science , heterojunction , mxenes , photocatalysis , exfoliation joint , chemical engineering , nanotechnology , specific surface area , graphene , optoelectronics , catalysis , organic chemistry , chemistry , engineering
Exploring cheap and efficient cocatalysts for enhancing the performance of photocatalysts is a challenge in the energy conversion field. Herein, 2D ultrathin Ti 3 C 2 nanosheets, a kind of MXenes, are prepared by etching Ti 3 AlC 2 with subsequent ultrasonic exfoliation. A novel 2D/2D heterojunction of ultrathin Ti 3 C 2 /Bi 2 WO 6 nanosheets is then successfully prepared by in situ growth of Bi 2 WO 6 ultrathin nanosheets on the surface of these Ti 3 C 2 ultrathin nanosheets. The resultant Ti 3 C 2 /Bi 2 WO 6 hybrids exhibit a short charge transport distance and a large interface contact area, assuring excellent bulk‐to‐surface and interfacial charge transfer abilities. Meanwhile, the improved specific surface area and pore structure endow Ti 3 C 2 /Bi 2 WO 6 hybrids with an enhanced CO 2 adsorption capability. As a result, the 2D/2D heterojunction of ultrathin Ti 3 C 2 /Bi 2 WO 6 nanosheets shows significant improvement on the performance of photocatalytic CO 2 reduction under simulated solar irradiation. The total yield of CH 4 and CH 3 OH obtained on the optimized Ti 3 C 2 /Bi 2 WO 6 hybrid is 4.6 times that obtained on pristine Bi 2 WO 6 ultrathin nanosheets. This work provides a new protocol for constructing 2D/2D photocatalytic systems and demonstrates Ti 3 C 2 as a promising and cheap cocatalyst.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom