z-logo
Premium
Highly Porous Polymer Aerogel Film‐Based Triboelectric Nanogenerators
Author(s) -
Zheng Qifeng,
Fang Liming,
Guo Haiquan,
Yang Kefang,
Cai Zhiyong,
Meador Mary Ann B.,
Gong Shaoqin
Publication year - 2018
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201706365
Subject(s) - triboelectric effect , aerogel , materials science , porosity , silanization , polymer , composite material , nanotechnology
Abstract A novel class of high performance polymer porous aerogel film‐based triboelectric nanogenerators (A‐NGs) is demonstrated. The A‐NGs, made of a pair of highly porous polymer films, exhibit much higher triboelectric outputs than the corresponding dense polymer film‐based triboelectric nanogenerators (D‐NGs) under the same mechanical stress. The triboelectric outputs of the A‐NGs increase significantly with increasing porosity, which can be attributed to the increase in contact area and the electrostatic induction in the porous structure, thereby leading to additional charges on the porous surface. Remarkably, the A‐NG fabricated using porous chitosan aerogel film paired with the most porous polyimide (with a porosity of 92%) aerogel film demonstrates a very high voltage of 60.6 V and current of 7.7 µA, corresponding to a power density of 2.33 W m −2 , which is sufficient to power 22 blue light‐emitting‐diodes (LEDs). This is the first report on triboelectric nanogenerators (TENGs) employing porous polymer aerogel films as both positive and negative materials to enhance triboelectric outputs. Furthermore, enhancing the tribopositive polarity of the cellulose aerogel film via silanization using aminosilane can dramatically improve the triboelectric performance. Therefore, this study provides new insights into investigating porous materials with tunable triboelectric polarities for high performance TENGs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here