z-logo
Premium
Potential‐Specific Structure at the Hematite–Electrolyte Interface
Author(s) -
McBriarty Martin E.,
Stubbs Joanne E.,
Eng Peter J.,
Rosso Kevin M.
Publication year - 2018
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201705618
Subject(s) - electrolyte , materials science , oxide , chemical physics , electrochemistry , polarization (electrochemistry) , electrode , chemical engineering , inorganic chemistry , chemistry , engineering , metallurgy
The atomic‐scale structure of the interface between a transition metal oxide and aqueous electrolyte regulates the interfacial chemical reactions fundamental to (photo)electrochemical energy conversion and electrode degradation. Measurements that probe oxide–electrolyte interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide–electrolyte interfaces far from equilibrium. Using a novel cell, the structure of the hematite (α‐Fe 2 O 3 ) ( 1 1 ¯ 02 )–electrolyte interface is measured under controlled electrochemical bias using synchrotron crystal truncation rod X‐ray scattering. At increasingly cathodic potentials, charge‐compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable state. Therefore, the flux of current and ions across the interface is regulated by multiple electrolyte layers whose specific structure and polarization change in response to the applied potential. The study reveals the complex environment underlying the simplified electrical double layer models used to interpret electrochemical measurements and emphasizes the importance of condition‐specific structural characterization for properly understanding catalytic processes at functional transition metal oxide–electrolyte interfaces.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here