z-logo
Premium
Ascidian‐Inspired Fast‐Forming Hydrogel System for Versatile Biomedical Applications: Pyrogallol Chemistry for Dual Modes of Crosslinking Mechanism
Author(s) -
Cho Jung Ho,
Lee Jung Seung,
Shin Jisoo,
Jeon Eun Je,
An Soohwan,
Choi Yi Sun,
Cho SeungWoo
Publication year - 2018
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201705244
Subject(s) - self healing hydrogels , pyrogallol , drug delivery , nanotechnology , materials science , regenerative medicine , tissue engineering , biomaterial , biophysics , chemistry , cell , biomedical engineering , biochemistry , polymer chemistry , biology , medicine
Exploitation of unique biochemical and biophysical properties of marine organisms has led to the development of functional biomaterials for various biomedical applications. Recently, ascidians have received great attention, owing to their extraordinary properties such as strong underwater adhesion and rapid self‐regeneration. Specific polypeptides containing 3,4,5‐trihydroxyphenylalanine (TOPA) in the blood cells of ascidians are associated with such intrinsic properties generated through complex oxidative processes. In this study, a bioinspired hydrogel platform is developed, demonstrating versatile applicability for tissue engineering and drug delivery, by conjugating pyrogallol (PG) moiety resembling ascidian TOPA to hyaluronic acid (HA). The HA–PG conjugate can be rapidly crosslinked by dual modes of oxidative mechanisms using an oxidant or pH control, resulting in hydrogels with different mechanical and physical characteristics. The versatile utility of HA–PG hydrogels formed via different crosslinking mechanisms is tested for different biomedical platforms, including microparticles for sustained drug delivery and tissue adhesive for noninvasive cell transplantation. With extraordinarily fast and different routes of PG oxidation, ascidian‐inspired HA–PG hydrogel system may provide a promising biomaterial platform for a wide range of biomedical applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here