Premium
Tunable Near‐Infrared Organic Nanowire Nanolasers
Author(s) -
Wang Xuedong,
Li ZhiZhou,
Zhuo MingPeng,
Wu Yishi,
Chen Shuo,
Yao Jiannian,
Fu Hongbing
Publication year - 2017
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201703470
Subject(s) - lasing threshold , materials science , nanowire , optoelectronics , laser , photoluminescence , nanotechnology , wavelength , optics , physics
Organic semiconductor nanowires have inherent advantages, such as amenability to low‐cost, low‐temperature processing, and inherent four‐level energy systems, which will significantly contribute to the organic solid‐state lasers (OSSLs) and miniaturized laser devices. However, the realization of near‐infrared (NIR) organic nanowire lasers is always a big challenge due to the difficultly in fabrication of organic nanowires with diameters of ≈100 nm and material issues such as low photoluminescence quantum efficiency in the red‐NIR region. What is more, the achievement of wavelength‐tunable OSSLs has also encountered enormous challenge. This study first demonstrates the 720 nm NIR lasing with a low lasing threshold of ≈1.4 µJ cm −2 from the organic single‐crystalline nanowires, which are self‐assembled from small organic molecules of ( E )‐3‐(4‐(dimethylamino)‐2‐methoxyphenyl)‐1‐(1‐hydroxynaphthalen‐2‐yl)prop‐2‐en‐1‐one through a facile solution‐phase growth method. Notably, these individual nanowires' Fabry–Pérot cavity can alternatively provide the red‐NIR lasing action at 660 or 720 nm from the 0–1 or 0–2 radiative transition channels, and the single (660 or 720 nm)/dual‐wavelength (660 and 720 nm) laser action can be achieved by modulating the length of these organic nanowires due to the intrinsic self‐absorption. These easily‐fabricated organic nanowires are natural laser sources, which offer considerable promise for coherent light devices integrated on the optics microchip.