Premium
Multifunctional Electrode Design Consisting of 3D Porous Separator Modulated with Patterned Anode for High‐Performance Dual‐Ion Batteries
Author(s) -
Zhang Songquan,
Wang Meng,
Zhou Zhiming,
Tang Yongbing
Publication year - 2017
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201703035
Subject(s) - separator (oil production) , anode , materials science , electrolyte , electrode , current collector , electrochemistry , porosity , chemical engineering , current density , nanotechnology , composite material , chemistry , physics , quantum mechanics , engineering , thermodynamics
Searching for low‐cost and high‐capacity electrode materials such as metal anodes is of important significance for the development of new generation rechargeable batteries. However, metal anodes always suffer from severe volume expansion/contraction during a repeated electrochemical alloying/dealloying process. In this study, a novel concept about modifying metal‐anodes‐based battery construction with a multifunctional electrode (ME) design is provided. The ME consists of a 3D porous separator that is modulated with a patterned aluminum anode, which simultaneously works as a current collector, anode material, and separator in a dual‐ion battery (DIB). The 3D porous separator not only enables the ME to possess significantly improved electrolyte uptake and retention capabilities, but also acts as a protecting layer to restrict the surface pulverization of the Al anode. The ME‐DIB displays remarkably enhanced cell performances, including excellent cycling stability with 92.4% capacity retention after 1000 cycles at a current density of 2 C, and superior rate performance with 80.7% capacity retention at 10 C.