z-logo
Premium
Surface Features of Recombinant Spider Silk Protein eADF4(κ16)‐Made Materials are Well‐Suited for Cardiac Tissue Engineering
Author(s) -
Petzold Jana,
Aigner Tamara B.,
Touska Filip,
Zimmermann Katharina,
Scheibel Thomas,
Engel Felix B.
Publication year - 2017
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201701427
Subject(s) - fibroin , tissue engineering , silk , spider silk , materials science , recombinant dna , microbiology and biotechnology , biomedical engineering , scaffold , biology , biochemistry , medicine , composite material , gene
Cardiovascular diseases causing high morbidity and mortality represent a major socioeconomic burden. The primary cause of impaired heart function is often the loss of cardiomyocytes. Thus, novel therapies aim at restoring the lost myocardial tissue. One promising approach is cardiac tissue engineering. Previously, it is shown that Antheraea mylitta silk protein fibroin is a suitable material for cardiac tissue engineering, however, its quality is difficult to control. To overcome this limitation, the interaction of primary rat heart cells with engineered Araneus diadematus fibroin 4 (κ16) (eADF4(κ16)) is investigated here, which is engineered based on the sequence of ADF4 by replacing the glutamic acid residue in the repetitive unit of its core domain with lysine. The data demonstrate that cardiomyocytes, fibroblasts, endothelial cells, and smooth muscle cells attach well to eADF4(κ16) films on glass coverslips which provide an engineered surface with a polycationic character. Moreover, eADF4(κ16) films have, in contrast to fibronectin films, no hypertrophic effect but allow the induction of cardiomyocyte hypertrophy. Finally, cardiomyocytes grown on eADF4(κ16) films respond to pro‐proliferative factors and exhibit proper cell‐to‐cell communication and electric coupling. Collectively, these data demonstrate that designed recombinant eADF4(κ16)‐based materials are promising materials for cardiac tissue engineering.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here