z-logo
Premium
Tissue Engineered Bio‐Blood‐Vessels Constructed Using a Tissue‐Specific Bioink and 3D Coaxial Cell Printing Technique: A Novel Therapy for Ischemic Disease
Author(s) -
Gao Ge,
Lee Jun Hee,
Jang Jinah,
Lee Dong Han,
Kong JeongSik,
Kim Byoung Soo,
Choi YeongJin,
Jang Woong Bi,
Hong Young Joon,
Kwon SangMo,
Cho DongWoo
Publication year - 2017
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201700798
Subject(s) - decellularization , neovascularization , biomedical engineering , materials science , progenitor cell , extracellular matrix , atorvastatin , cell , therapeutic angiogenesis , angiogenesis , medicine , tissue engineering , cancer research , stem cell , pharmacology , microbiology and biotechnology , chemistry , biology , biochemistry
Endothelial progenitor cells (EPCs) are a promising cell source for the treatment of several ischemic diseases for their potentials in neovascularization. However, the application of EPCs in cell‐based therapy has shown low therapeutic efficacy due to hostile tissue conditions after ischemia. In this study, a bio‐blood‐vessel (BBV) is developed, which is produced using a novel hybrid bioink (a mixture of vascular‐tissue‐derived decellularized extracellular matrix (VdECM) and alginate) and a versatile 3D coaxial cell printing method for delivering EPC and proangiogenic drugs (atorvastatin) to the ischemic injury sites. The hybrid bioink not only provides a favorable environment to promote the proliferation, differentiation, and neovascularization of EPCs but also enables a direct fabrication of tubular BBV. By controlling the printing parameters, the printing method allows to construct BBVs in desired dimensions, carrying both EPCs and atorvastatin‐loaded poly(lactic‐ co ‐glycolic) acid microspheres. The therapeutic efficacy of cell/drug‐laden BBVs is evaluated in an ischemia model at nude mouse hind limb, which exhibits enhanced survival and differentiation of EPCs, increased rate of neovascularization, and remarkable salvage of ischemic limbs. These outcomes suggest that the 3D‐printed ECM‐mediated cell/drug implantation can be a new therapeutic approach for the treatment of various ischemic diseases.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here