Premium
Polymer Solar Cells: Incorporating Graphitic Carbon Nitride (g‐C 3 N 4 ) Quantum Dots into Bulk‐Heterojunction Polymer Solar Cells Leads to Efficiency Enhancement (Adv. Funct. Mater. 11/2016)
Author(s) -
Chen Xiang,
Liu Qing,
Wu Qiliang,
Du Pingwu,
Zhu Jun,
Dai Songyuan,
Yang Shangfeng
Publication year - 2016
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201670070
Subject(s) - materials science , polymer solar cell , graphitic carbon nitride , heterojunction , quantum dot , polymer , optoelectronics , hybrid solar cell , energy conversion efficiency , nanotechnology , doping , solar cell , nitride , carbon fibers , carbon nitride , quantum efficiency , quantum dot solar cell , active layer , layer (electronics) , composite number , composite material , photocatalysis , organic chemistry , chemistry , thin film transistor , catalysis
Graphitic carbon nitride (g‐C 3 N 4 ) is applied in bulk heterojunction polymer solar cells for the first time by doping g‐C 3 N 4 quantum dots (QDs) in the P3HT:PC 61 BM, PBDTTT‐C:PC 71 BM, or PTB7‐Th:PC 71 BM active layer. This results in obvious efficiency enhancement, as S. F. Yang and co‐workers show on page 1719. Thus, the novel application of g‐C 3 N 4 in energy conversion beyond the commonly used photocatalysts is demonstrated.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom