Premium
Reusable Cellulose‐Based Hydrogel Sticker Film Applied as Gate Dielectric in Paper Electrolyte‐Gated Transistors
Author(s) -
Cunha Inês,
Barras Raquel,
Grey Paul,
Gaspar Diana,
Fortunato Elvira,
Martins Rodrigo,
Pereira Luís
Publication year - 2017
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201606755
Subject(s) - materials science , electrolyte , cellulose , thin film transistor , microcrystalline cellulose , carboxymethyl cellulose , transistor , flexible electronics , dielectric , chemical engineering , nanotechnology , optoelectronics , layer (electronics) , electrode , voltage , electrical engineering , chemistry , engineering , metallurgy , sodium
A new concept for reusable eco‐friendly hydrogel electrolytes based on cellulose is introduced. The reported electrolytes are designed and engineered through a simple, fast, low‐cost, and eco‐friendly dissolution method of microcrystalline cellulose at low temperature using an aqueous LiOH/urea solvent system. The cellulose solution is combined with carboxymethyl cellulose, followed by the regeneration and simultaneous ion incorporation. The produced free standing cellulose‐based electrolyte films exhibit interesting properties for application in flexible electrochemical devices, such as biosensors or electrolyte‐gated transistors (EGTs), because of their high specific capacitances (4–5 µF cm −2 ), transparency, and flexibility. Indium–gallium–zinc‐oxide EGTs on glass with laminated cellulose‐based hydrogel electrolytes (CHEs) as the gate dielectric are produced presenting a low working voltage (<2 V), showing an on–off current ratio ( I on/off ) of 10 6 , a subthreshold swing lower than 0.2 V dec −1 , and saturation mobility (μ Sat ) reaching 26 cm 2 V −1 s −1 . The flexible CHE‐gated transistors on paper are also demonstrated, which operate at switching frequencies up to 100 Hz. Combining the flexibility of the EGTs on paper with the reusability of the developed CHEs is a breakthrough toward biodegradable advanced functional materials allied with disposable/recyclable and low‐cost electronic devices.