Premium
Ultrathin MnO 2 /Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide‐Trapping Shield for High‐Performance Li–S Batteries
Author(s) -
Kong Weibang,
Yan Lingjia,
Luo Yufeng,
Wang Datao,
Jiang Kaili,
Li Qunqing,
Fan Shoushan,
Wang Jiaping
Publication year - 2017
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201606663
Subject(s) - materials science , polysulfide , graphene , carbon nanotube , oxide , scanning electron microscope , chemical engineering , dielectric spectroscopy , cyclic voltammetry , nanotechnology , electrochemistry , composite material , electrode , metallurgy , chemistry , engineering , electrolyte
Ultrathin MnO 2 /graphene oxide/carbon nanotube (G/M@CNT) interlayers are developed as efficient polysulfide‐trapping shields for high‐performance Li–S batteries. A simple layer‐by‐layer procedure is used to construct a sandwiched vein–membrane interlayer of thickness 2 µm and areal density 0.104 mg cm −2 by loading MnO 2 nanoparticles and graphene oxide (GO) sheets on superaligned carbon nanotube films. The G/M@CNT interlayer provides a physical shield against both polysulfide shuttling and chemical adsorption of polysulfides by MnO 2 nanoparticles and GO sheets. The synergetic effect of the G/M@CNT interlayer enables the production of Li–S cells with high sulfur loadings (60–80 wt%), a low capacity decay rate (−0.029% per cycle over 2500 cycles at 1 C), high rate performance (747 mA h g −1 at a charge rate of 10 C), and a low self‐discharge rate with high capacity retention (93.0% after 20 d rest). Electrochemical impedance spectroscopy, cyclic voltammetry, and scanning electron microscopy observations of the Li anodes after cycling confirm the polysulfide‐trapping ability of the G/M@CNT interlayer and show its potential in developing high‐performance Li–S batteries.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom