Premium
High‐κ Solid‐Gate Transistor Configured Graphene Biosensor with Fully Integrated Structure and Enhanced Sensitivity
Author(s) -
Wang Cheng,
Li Yijun,
Zhu Yibo,
Zhou Xiaohong,
Lin Qiao,
He Miao
Publication year - 2016
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201602960
Subject(s) - biosensor , materials science , transconductance , sensitivity (control systems) , nanotechnology , transistor , field effect transistor , optoelectronics , nanosensor , graphene , electronic engineering , electrical engineering , voltage , engineering
A fully integrated graphene field‐effect transistor (GFET) nanosensor utilizing a novel high‐κ solid‐gating geometry for a practical biosensor with enhanced sensitivity is presented. Herein, an “in plane” gate supplying electrical field through a 30 nm HfO 2 dielectric layer is employed to eliminate the cumbrous external wire electrode in conventional liquid‐gate GFET nanosensors that undesirably limits the device potential in on‐site sensing applications. In addition to the advantage in the device integration degree, the transconductance level is found to be increased by about 50% over liquid‐gate GFET devices in aqueous‐media, thereby improves the sensitivity performance in sensor applications. As the first demonstration of biosensing applications, a small‐molecule antibiotic, kanamycin A, is detected by means of an aptameric competitive affinity principle. It is experimentally shown that the label‐free and specific quantification of kanamycin A with a concentration resolution at 11.5 × 10 −9 m is achievable through a single direct observation of the 200 s fast bioassay without any further noise canceling. These results demonstrate the utility and practicability of the new devices in label‐free biosensing as a novel analytical tool, and potentially hold great promise in other significant biomedical applications.