Premium
A Shape Memory Acrylamide/DNA Hydrogel Exhibiting Switchable Dual pH‐Responsiveness
Author(s) -
Hu Yuwei,
Lu ChunHua,
Guo Weiwei,
AlemanGarcia Miguel Angel,
Ren Jiangtao,
Willner Itamar
Publication year - 2015
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201503134
Subject(s) - self healing hydrogels , thymine , dissociation (chemistry) , materials science , cytosine , protonation , dna , shape memory alloy , guanine , crystallography , polymer chemistry , chemical engineering , chemistry , nucleotide , organic chemistry , composite material , biochemistry , ion , gene , engineering
Shape memory acrylamide/DNA hydrogels include two different crosslinkers as stabilizing elements. The triggered dissociation of one of the crosslinking elements transforms the shaped hydrogel into an arbitrarily shaped (or shapeless) quasi‐liquid state. The remaining crosslinking element, present in the quasi‐liquid, provides an internal memory that restores the original shaped hydrogel upon the stimulus‐triggered regeneration of the second crosslinking element. Two pH‐sensitive shape memory hydrogels, forming Hoogsten‐type triplex DNA structures, are described. In one system, the shaped hydrogel is stabilized at pH = 7.0 by two different duplex crosslinkers, and the transition of the hydrogel into the shapeless quasi‐liquid proceeds at pH = 5.0 by separating one of the crosslinking units into a protonated cytosine–guanine–cytosine (C–G·C + ) triplex. The second shaped hydrogel is stabilized at pH = 7.0, by cooperative duplex and thymine–adenine–thymine triplex (T–A·T) bridges. At pH = 10.0, the triplex units separate, leading to the dissociation of the hydrogel into the quasi‐liquid state. The cyclic, pH‐stimulated transitions of the two systems between shaped hydrogels and shapeless states are demonstrated. Integrating the two hydrogels into a shaped “two‐arrowhead” hybrid structure allows the pH‐stimulated cyclic transitions of addressable domains of the hybrid between shaped and quasi‐liquid states.