z-logo
Premium
Fully Printed Foldable Integrated Logic Gates with Tunable Performance Using Semiconducting Carbon Nanotubes
Author(s) -
Cai Le,
Zhang Suoming,
Miao Jinshui,
Yu Zhibin,
Wang Chuan
Publication year - 2015
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201502367
Subject(s) - materials science , carbon nanotube , nanotechnology , flexible electronics , substrate (aquarium) , optoelectronics , printed electronics , inkwell , composite material , oceanography , geology
The realization of large‐area and low‐cost flexible macroelectronics relies on both the advancements in materials science and the innovations in manufacturing techniques. In this study, extremely bendable and foldable carbon nanotube thin film transistors and integrated logic gates are fabricated on a piece of ultrathin polyimide substrate through an ink‐jet‐like printing process. The adoption of a hybrid gate dielectric layer consisting of barium titanate nanoparticles and poly(methyl methacrylate) has led to not only excellent gating effect but also superior mechanical compliance. The device characteristics show negligible amount of change after up to 1000 cycles of bending tests with curvature radii down to 1 mm, as well as very aggressive folding tests. Additionally, the electrical characteristics of each integrated logic gate can be tuned and optimized individually by using different numbers of carbon nanotube printing passes for different devices, manifesting the unique adaptability of ink‐jet printing as a digital, additive, and maskless method. This report on fully printed and foldable integrated logic gates represents an inspiring advancement toward the practical applications of carbon nanotubes for high‐performance and low‐cost ubiquitous flexible electronics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here