Premium
Inverted Layer‐By‐Layer Fabrication of an Ultraflexible and Transparent Ag Nanowire/Conductive Polymer Composite Electrode for Use in High‐Performance Organic Solar Cells
Author(s) -
Kim Youngmin,
Ryu Tae In,
Ok KiHoon,
Kwak MinGi,
Park Sungmin,
Park NamGyu,
Han Chul Jong,
Kim Bong Soo,
Ko Min Jae,
Son Hae Jung,
Kim JongWoong
Publication year - 2015
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201501046
Subject(s) - materials science , electrode , optoelectronics , electrical conductor , composite number , indium tin oxide , bend radius , layer (electronics) , energy conversion efficiency , fabrication , conductive polymer , nanotechnology , composite material , polymer , bending , medicine , chemistry , alternative medicine , pathology
A highly flexible and transparent conductive electrode based on consecutively stacked layers of conductive polymer (CP) and silver nanowires (AgNWs) fully embedded in a colorless polyimide (cPI) is achieved by utilizing an inverted layer‐by‐layer processing method. This CP‐AgNW composite electrode exhibits a high transparency of >92% at wavelengths of 450–700 nm and a low resistivity of 7.7 Ω ◻ −1 , while its ultrasmooth surface provides a large contact area for conductive pathways. Furthermore, it demonstrates an unprecedentedly high flexibility and good mechanical durability during both outward and inward bending to a radius of 40 μm. Subsequent application of this composite electrode in organic solar cells achieves power conversion efficiencies as high as 7.42%, which represents a significant improvement over simply embedding AgNWs in cPI. This is attributed to a reduction in bimolecular recombination and an increased charge collection efficiency, resulting in performance comparable to that of indium tin oxide‐based devices. More importantly, the high mechanical stability means that only a very slight reduction in efficiency is observed with bending (<5%) to a radius of 40 μm. This newly developed composite electrode is therefore expected to be directly applicable to a wide range of high‐performance, low‐cost flexible electronic devices.