Premium
p‐Si/SnO 2 /Fe 2 O 3 Core/Shell/Shell Nanowire Photocathodes for Neutral pH Water Splitting
Author(s) -
Kargar Alireza,
Kim Sung Joo,
Allameh Paniz,
Choi Chulmin,
Park Namseok,
Jeong Huisu,
Pak Yusin,
Jung Gun Young,
Pan Xiaoqing,
Wang Deli,
Jin Sungho
Publication year - 2015
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201404571
Subject(s) - materials science , photocurrent , nanowire , water splitting , fabrication , nanotechnology , transmission electron microscopy , electrolyte , shell (structure) , hydrogen , scanning electron microscope , chemical engineering , optoelectronics , electrode , photocatalysis , catalysis , composite material , chemistry , medicine , biochemistry , alternative medicine , organic chemistry , pathology , engineering
Silicon is one of the promising materials for solar water splitting and hydrogen production; however, it suffers from two key factors, including the large external potential required to drive water splitting reactions at its surface and its instability in the electrolyte. In this study, a successful fabrication of novel p‐Si/n‐SnO 2 /n‐Fe 2 O 3 core/shell/shell nanowire (css‐NW) arrays, consisting of vertical Si NW cores coated with a thin SnO 2 layer and a dense Fe 2 O 3 nanocrystals (NCs) shell, and their application for significantly enhanced solar water reduction in a neutral medium is reported. The p‐Si/n‐SnO 2 /n‐Fe 2 O 3 css‐NW structure is characterized in detail using scanning, transmission, and scanning transmission electron microscopes. The p‐Si/n‐SnO 2 /n‐Fe 2 O 3 css‐NWs show considerably improved photocathodic performances, including higher photocurrent and lower photocathodic turn‐on potential, compared to the bare p‐Si NWs or p‐Si/n‐SnO 2 core/shell NWs (cs‐NWs), due to increased optical absorption, enhanced charge separation, and improved gas evolution. As a result, photoactivity at 0 V versus reversible hydrogen electrode and a low onset potential in the neutral solution are achieved. Moreover, p‐Si/n‐SnO 2 /n‐Fe 2 O 3 css‐NWs exhibit long‐term photoelectrochemical stability due to the Fe 2 O 3 NCs shell well protection. These results reveal promising css‐NW photoelectrodes from cost‐effective materials by facile fabrication with simultaneously improved photocathodic performance and stability.