Premium
B‐doped Carbon Coating Improves the Electrochemical Performance of Electrode Materials for Li‐ion Batteries
Author(s) -
Wang Cong,
Guo Ziyang,
Shen Wei,
Xu Qunjie,
Liu Haimei,
Wang Yonggang
Publication year - 2014
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201401006
Subject(s) - materials science , dielectric spectroscopy , electrochemistry , raman spectroscopy , carbon fibers , coating , lithium (medication) , anode , doping , dopant , electrode , graphite , analytical chemistry (journal) , chemical engineering , nanotechnology , composite material , composite number , optoelectronics , chemistry , organic chemistry , medicine , physics , endocrinology , engineering , optics
An evolutionary modification approach, boron doped carbon coating, is initially used to improve the electrochemical properties of electrode materials of lithium‐ion batteries, such as Li 3 V 2 (PO 4 ) 3 , and demonstrates apparent and significant modification effects. Based on the precise analysis of X‐ray photoemission spectroscopy results, Raman spectra, and electrochemical impedance spectroscopy results for various B‐doped carbon coated Li 3 V 2 (PO 4 ) 3 samples, it is found that, among various B‐doping types (B 4 C, BC 3 , BC 2 O and BCO 2 ), the graphite‐like BC 3 dopant species plays a huge role on improving the electronic conductivity and electrochemical activity of the carbon coated layer on Li 3 V 2 (PO 4 ) 3 surface. As a result, when compared with the bare carbon coated Li 3 V 2 (PO 4 ) 3 , the electrochemical performances of the B‐doped carbon coated Li 3 V 2 (PO 4 ) 3 electrode with a moderate doping amount are greatly improved. For example, when cycled under 1 C and 20 C in the potential range of 3.0–4.3 V, this sample shows an initial capacity of 122.5 and 118.4 mAh g −1 , respectively; after 200 cycles, nearly 100% of the initial capacity is retained. Moreover, the modification effects of B‐doped carbon coating approach are further validated on Li 4 Ti 5 O 12 anode material.