Premium
Programmable Arrays of “Micro‐Bubble” Constructs via Self‐Encapsulation
Author(s) -
Ye Chunhong,
Kulkarni Dhaval D.,
Dai Hongqi,
Tsukruk Vladimir V.
Publication year - 2014
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201400254
Subject(s) - materials science , bubble , fibroin , silk , nanotechnology , capillary action , encapsulation (networking) , fabrication , coating , dissolution , polymer , composite material , chemical engineering , computer science , medicine , computer network , alternative medicine , engineering , pathology , parallel computing
The fabrication of ordered arrays of self‐encapsulated “micro‐bubble” material constructs based on the capillary‐driven collapse of flexible silk fibroin sheets during propagation of the diffusion front of the encapsulated material is demonstrated. The individual micro‐bubbles of different shapes are composed of a sacrificial material encapsulated within the ultrathin silk coating, which covers and seals the inner material during dissolution of supporting layer. The array of microscopic rectangular multi‐layer silk sheets on supporting polymer layers can be selectively dissolved along the edges to initiate their self‐encapsulation. The resulting micro‐bubble morphology, shape, and arrangements can be readily pre‐programmed by controlling the geometry of the silk sheets, such as thickness, dimension, and aspect ratio. These micro‐bubble constructs can be utilized for encapsulation of various materials as well as nanoparticles in a single or multi compartmental manner. These biocompatible and biodegradable micro‐bubble constructs present a promising platform for one‐shot spatial and controllable loading and locking material arrays with addressable abilities.