z-logo
Premium
Atomic Structure and Kinetics of NASICON Na x V 2 (PO 4 ) 3 Cathode for Sodium‐Ion Batteries
Author(s) -
Jian Zelang,
Yuan Chenchen,
Han Wenze,
Lu Xia,
Gu Lin,
Xi Xuekui,
Hu YongSheng,
Li Hong,
Chen Wen,
Chen Dongfeng,
Ikuhara Yuichi,
Chen Liquan
Publication year - 2014
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201400173
Subject(s) - sodium , materials science , ion , crystal structure , crystallography , cathode , formula unit , fast ion conductor , phase (matter) , electrochemistry , analytical chemistry (journal) , chemistry , electrode , electrolyte , metallurgy , organic chemistry , chromatography
Na 3 V 2 (PO 4 ) 3 is one of the most important cathode materials for sodium‐ion batteries, delivering about two Na extraction/insertion from/into the unit structure. To understand the mechanism of sodium storage, a detailed structure of rhombohedral Na 3 V 2 (PO 4 ) 3 and its sodium extracted phase of NaV 2 (PO 4 ) 3 are investigated at the atomic scale using a variety of advanced techniques. It is found that two different Na sites (6b, M1 and 18e, M2) with different coordination environments co‐exist in Na 3 V 2 (PO 4 ) 3 , whereas only one Na site (6b, M1) exists in NaV 2 (PO 4 ) 3 . When Na is extracted from Na 3 V 2 (PO 4 ) 3 to form NaV 2 (PO 4 ) 3 , Na + occupying the M2 site (CN = 8) is extracted and the rest of the Na remains at M1 site (CN = 6). In addition, the Na atoms are not randomly distributed, possibly with an ordered arrangement in M2 sites locally for Na 3 V 2 (PO 4 ) 3 . Na + ions at the M1 sites in Na 3 V 2 (PO 4 ) 3 tend to remain immobilized, suggesting a direct M2‐to‐M2 conduction pathway. Only Na occupying the M2 sites can be extracted, suggesting about two Na atoms able to be extracted from the Na 3 V 2 (PO 4 ) 3 structure.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom