Premium
Energy Harvesting for Nanostructured Self‐Powered Photodetectors
Author(s) -
Peng Lin,
Hu Linfeng,
Fang Xiaosheng
Publication year - 2014
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201303367
Subject(s) - photodetector , materials science , nanotechnology , energy harvesting , light energy , sustainable energy , energy (signal processing) , engineering physics , optoelectronics , electrical engineering , physics , engineering , renewable energy , optics , quantum mechanics
Harvesting the available forms of energies in the environment to create self‐powered nanosystems is now becoming a technological reality. Self‐powered nanodevices and nanosystems are expected to play a crucial role in the future development of nanotechnology because of their specific role in fundamental studies and nanotechnological applications, mainly due to their size‐dependent properties and independent, sustainable, maintainance‐free operation. As a new field in self‐powered nanotechnology‐related research, self‐powered photodetectors have been developed which exhibit a much faster photoresponse and higher photosensitivity than the conventional photoconductor‐based photodetectors. Herein, the energy‐havesting techniques are discussed and their prospects for application in self‐powered photodetectors are summarized. Moreover, potential future directions of this research area are highlighted.