Premium
Highly Robust Lithium Ion Battery Anodes from Lignin: An Abundant, Renewable, and Low‐Cost Material
Author(s) -
Tenhaeff Wyatt E.,
Rios Orlando,
More Karren,
McGuire Michael A.
Publication year - 2014
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201301420
Subject(s) - materials science , anode , carbonization , faraday efficiency , battery (electricity) , electrochemistry , lithium ion battery , carbon fibers , electrolyte , current collector , lithium (medication) , chemical engineering , lignin , propylene carbonate , electrode , nanotechnology , composite material , organic chemistry , composite number , medicine , power (physics) , chemistry , physics , engineering , quantum mechanics , endocrinology , scanning electron microscope
The synthesis, processing, and performance of a low‐cost monolithic battery electrode, produced entirely of natural and renewable resources, are reported. This anode material exhibits tunable electrochemical performance suitable for both high power and high energy applications. A synthesis method that directly results in electrically interconnected three‐dimensional architectures is presented, where the carbon framework functions as current collector and lithium insertion material, eliminating the extra mass and expense of inactive materials in conventional designs. Fibrous carbon electrode materials are produced from solvent extracted lignin using scalable melt processing technology and thermal conversion methods. The resulting free‐standing electrodes exhibit comparable electrochemical performance to commercial carbon‐based anodes at a fraction of the materials and processing costs. Compositional and electrochemical characterization shows that carbonized lignin has a disordered nano‐crystalline microstructure. The carbonized mats cycle reversibly in conventional aprotic organic electrolytes with Coulombic efficiencies over 99.9%. Moreover, lignin carbon fibers carbonized at 2000 °C can cycle reversibly in 1 m LiPF 6 in propylene carbonate.