z-logo
Premium
Enhanced Performance of a ZnO Nanowire‐Based Self‐Powered Glucose Sensor by Piezotronic Effect
Author(s) -
Yu Ruomeng,
Pan Caofeng,
Chen Jun,
Zhu Guang,
Wang Zhong Lin
Publication year - 2013
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201300593
Subject(s) - materials science , nanowire , sensitivity (control systems) , nanogenerator , optoelectronics , semiconductor , band diagram , nanotechnology , signal (programming language) , band gap , electronic engineering , computer science , piezoelectricity , composite material , engineering , programming language
A self‐powered, piezotronic effect‐enhanced glucose sensor based on metal‐semiconductor‐metal (M–S–M) structured single ZnO nanowire device is demonstrated. A triboelectrical nanogenerator (TENG) is integrated to build a self‐powered glucose monitoring system (GMS) to realize the continuously monitoring of glucose concentrations. The performance of the glucose sensor is generally enhanced by the piezotronic effect when applying a –0.79% compressive strain on the device, and magnitude of the output signal is increased by more than 200%; the sensing resolution and sensitivity of sensors are improved by more than 200% and 300%, respectively. A theoretical model using energy band diagram is proposed to explain the observed results. This work demonstrates a promising approach to raise the sensitivity, improve the sensing resolution, and generally enhance the performance of glucose sensors, also providing a possible way to build up a self‐powered GMS.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom