z-logo
Premium
Microfabricated Porous Silk Scaffolds for Vascularizing Engineered Tissues
Author(s) -
Wray Lindsay S.,
Tsioris Konstantinos,
Gil Eun Seok,
Omenetto Fiorenzo G.,
Kaplan David L.
Publication year - 2013
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201202926
Subject(s) - scaffold , materials science , tissue engineering , nanotechnology , silk , microfabrication , regenerative medicine , biomedical engineering , self healing hydrogels , fabrication , stem cell , composite material , microbiology and biotechnology , engineering , medicine , alternative medicine , pathology , polymer chemistry , biology
There is critical clinical demand for tissue‐engineered (TE), 3D constructs for tissue repair and organ replacements. Current efforts toward this goal are prone to necrosis at the core of larger constructs because of limited oxygen and nutrient diffusion. Therefore, critically sized 3D TE constructs demand an immediate vascular system for sustained tissue function upon implantation. To address this challenge the goal of this project was to develop a strategy to incorporate microchannels into a porous silk TE scaffold that could be fabricated reproducibly using microfabrication and soft lithography. Silk is a suitable biopolymer material for this application because it is mechanically robust, biocompatible, slowly degrades in vivo, and has been used in a variety of TE constructs. Here, the fabrication of a silk‐based TE scaffold that contains an embedded network of porous microchannels is reported. Enclosed porous microchannels support endothelial lumen formation, a critical step toward development of the vascular niche, while the porous scaffold surrounding the microchannels supports tissue formation, demonstrated using human mesenchymal stem cells. This approach for fabricating vascularized TE constructs is advantageous compared to previous systems, which lack porosity and biodegradability or degrade too rapidly to sustain tissue structure and function. The broader impact of this research will enable the systemic study and development of complex, critically‐sized engineered tissues, from regenerative medicine to in vitro tissue models of disease states.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here