z-logo
Premium
Hierarchical FAU‐ and LTA‐Type Zeolites by Post‐Synthetic Design: A New Generation of Highly Efficient Base Catalysts
Author(s) -
Verboekend Danny,
Keller Tobias C.,
Mitchell Sharon,
PérezRamírez Javier
Publication year - 2013
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201202320
Subject(s) - knoevenagel condensation , mesoporous material , malononitrile , catalysis , zeolite , materials science , benzaldehyde , ion exchange , base (topology) , chemical engineering , porosity , inorganic chemistry , ion , organic chemistry , chemistry , composite material , mathematical analysis , mathematics , engineering
Hierarchical FAU‐ and LTA‐type catalysts are prepared by post‐synthetic modifications and evaluated in the base‐catalyzed Knoevenagel condensation of benzaldehyde with malononitrile. A novel route to attain mesoporous Al‐rich zeolites (A and X) is demonstrated, while mesoporous Y and USY zeolites are prepared using recently developed methods. Base functionality is introduced by alkali ion exchange (Cs, Na) or by high‐temperature nitridation in ammonia. A thorough characterization of the zeolites' structure, composition, porosity, morphology, and basicity demonstrates that the presence of a secondary mesopore network enhances the ion‐exchange efficiency and the structural incorporation of nitrogen. The modified USY zeolites display twice the conversion, while the hierarchical A, X, and Y are up to 10 times more active based on the enhanced accessibility. These results demonstrate that the Knoevenagel condensation takes place predominately at the external surface, highlighting secondary porosity as a key criterion in the design of basic zeolite catalysts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom