Premium
Elaborately Aligning Bead‐Shaped Nanowire Arrays Generated by a Superhydrophobic Micropillar Guiding Strategy
Author(s) -
Wu Yuchen,
Chen Xiao,
Su Bin,
Song Yanlin,
Jiang Lei
Publication year - 2012
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201200971
Subject(s) - bead , materials science , nanowire , nanotechnology , mesoscopic physics , fabrication , polymer , nanoscopic scale , polystyrene , composite material , medicine , physics , alternative medicine , pathology , quantum mechanics
Bead‐shaped 1D structures are of great interest due to their unique applications in mesoscopic optics/electronics and their specific ability to collect tiny droplets. Here, a novel method to fabricate aligning bead‐shaped nanowire arrays assisted by highly adhesive superhydrophobic surfaces based on a micropillar guiding strategy is presented. Different from previous fabrication techniques, bead‐shaped nanowires generated in this method are strictly oriented in a large scale. Rayleigh instability, which occurs at ultralow polymer concentration, can introduce bead‐shaped nanowires at the cost of structural strength. Thus, PS spheres are more suitable to serve as bead building blocks to generate firm bead‐shaped nanowire arrays. The bead number is tunable by tailoring the polystyrene‐sphere/polyvinyl‐formal ratio. Furthermore, as‐prepared bead‐shaped nanowires have the unique ability to directionally drive tiny drops and collect coalesced microdroplets when placed in mist. With an increase in humidity, the nanowires show a segmented swelling behavior in the “bead” parts whereas the “joint nanowire” parts remain the same. Because such bead‐shaped nanowires are formed regularly, collected microdroplets upon the beads would not interact with each other. The findings offer new insight into the alignment of bead‐shaped nanostructures and might provide promising opportunities in fundamental research and for industrial applications.