Premium
Oriented Growth of Al 2 O 3 :ZnO Nanolaminates for Use as Electron‐Selective Electrodes in Inverted Polymer Solar Cells
Author(s) -
Cheun Hyeunseok,
FuentesHernandez Canek,
Shim Jaewon,
Fang Yunnan,
Cai Ye,
Li Hong,
Sigdel Ajaya K.,
Meyer Jens,
Maibach Julia,
Dindar Amir,
Zhou Yinhua,
Berry Joseph J.,
Bredas JeanLuc,
Kahn Antoine,
Sandhage Kenneth H.,
Kippelen Bernard
Publication year - 2012
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201102968
Subject(s) - materials science , electrode , work function , doping , layer (electronics) , energy conversion efficiency , atomic layer deposition , transmittance , polymer , deposition (geology) , optoelectronics , polymer solar cell , electrical resistivity and conductivity , active layer , analytical chemistry (journal) , chemical engineering , nanotechnology , composite material , organic chemistry , chemistry , sediment , electrical engineering , thin film transistor , paleontology , engineering , biology
Atomic layer deposition is used to synthesize Al 2 O 3 :ZnO(1: x ) nanolaminates with the number of deposition cycles, x , ranging from 5 to 30 for evaluation as optically transparent, electron‐selective electrodes in polymer‐based inverted solar cells. Al 2 O 3 :ZnO(1:20) nanolaminates are found to exhibit the highest values of electrical conductivity (1.2 × 10 3 S cm −1 ; more than six times higher than for neat ZnO films), while retaining a high optical transmittance (≥80% in the visible region) and a low work function (4.0 eV). Such attractive performance is attributed to the structure (ZnO crystal size and crystal alignment) and doping level of this intermediate Al 2 O 3 :ZnO film composition. Polymer‐based inverted solar cells using poly(3‐hexylthiophene) (P3HT):phenyl‐C 61 ‐butyric acid methyl ester (PCBM) mixtures in the active layer and Al 2 O 3 :ZnO(1:20) nanolaminates as transparent electron‐selective electrodes exhibit a power conversion efficiency of 3% under simulated AM 1.5 G, 100 mW cm −2 illumination.