z-logo
Premium
Fabrication of Multiscale Gradient Polymer Patterns by Direct Molding and Spatially Controlled Reflow
Author(s) -
Chae Jae Joon,
Lee Sung Hoon,
Suh Kahp Y.
Publication year - 2011
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201001687
Subject(s) - materials science , perpendicular , fabrication , composite material , substrate (aquarium) , lithography , polymer , molding (decorative) , layer (electronics) , viscosity , optics , optoelectronics , geometry , pathology , geology , physics , medicine , oceanography , alternative medicine , mathematics
Abstract Size variations of pattern spacing as well as gradient control of the as‐formed polymeric pattern via a spatially controlled reflow process are presented. Micro‐ and nanopatterns of polymethyl methacrylate (PMMA) in the form of line‐and‐space strips are first generated by capillary force lithography (CFL), and the residual layers are removed by ashing process. Subsequently, the exposed PMMA strips underwent a controlled reflow process above the glass transition temperature (T g ) while heating single or both sides of the substrate either in parallel to the line pattern (parallel reflow) or perpendicular to the line pattern (perpendicular reflow). As a result of this controlled reflow, a linear or a parabolic profile of pattern spacing is achieved depending on the heating mode. Furthermore, multiscale gradient patterns are formed with the spacing ranging from 98 nm to 4.23 μm (a difference of two orders of magnitude) in a single patterned layer using the original micropattern of 16 μm width and 8 μm spacing. In order to explain reflow behaviors, a simple theoretical model relating the normalized pattern width to the polymer viscosity is derived based on a leveling kinetics of polymer melt. Also, gradient PMMA channels are fabricated and bonded to a glass substrate, which are used to flow a liquid inside the channels by capillarity‐driven flow.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here