Premium
Assemblies of Functional Peptides and Their Applications in Building Blocks for Biosensors
Author(s) -
de la Rica Roberto,
Pejoux Christophe,
Matsui Hiroshi
Publication year - 2011
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201001419
Subject(s) - biosensor , materials science , nanotechnology , transducer , peptide , molecular recognition , nanotube , bridging (networking) , computer science , molecule , carbon nanotube , chemistry , acoustics , physics , computer network , biochemistry , organic chemistry
This feature article highlights our recent applications of functional peptide nanotubes, self‐assembled from short peptides with recognition elements, as building blocks to develop sensors. Peptide nanotubes with high aspect ratios are excellent building blocks for a directed assembly into device configurations, and their combined structures with nanometric diameters and micrometric lengths enables to bridge the “nanoworld” and the “microworld”. When the peptide‐nanotube‐based biosensors, which incorporate molecular recognition units, apply alternating current probes to detect impedance signals, the peptide nanotubes behave as excellent building blocks of the transducer for the detection of target analyes such as pathogens, cells, and heavey metal ions with high specificity. In some sensor configurations, the electric signal can be amplified by coupling them with ion‐specific mineralization via molecular recognition of peptides. In general the detection limit of peptide nanotube chips sensors is very low and the dynamic range of detection can be widened by improved device designs.