Premium
Autonomic Recovery of Fiber/Matrix Interfacial Bond Strength in a Model Composite
Author(s) -
Blaiszik Benjamin J.,
Baginska Marta,
White Scott R.,
Sottos Nancy R.
Publication year - 2010
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201000798
Subject(s) - materials science , composite material , composite number , self healing , fiber , scanning electron microscope , epoxy , matrix (chemical analysis) , dicyclopentadiene , polymerization , polymer , medicine , alternative medicine , pathology
Autonomic self‐healing of interfacial damage in a model single‐fiber composite is achieved through sequestration of ca. 1.5 μm diameter dicyclopentadiene (DCPD) healing‐agent‐filled capsules and recrystallized Grubbs’ catalyst to the fiber/matrix interface. When damage initiates at the fiber/matrix interface, the capsules on the fiber surface rupture, and healing agent is released into the crack plane where it contacts the catalyst, initiating polymerization. A protocol for characterizing the efficiency of interfacial healing for the single‐fiber system is established. Interfacial shear strength (IFSS), a measure of the bond strength between the fiber and matrix, is evaluated for microbond specimens consisting of a single self‐healing functionalized fiber embedded in a microdroplet of epoxy. The initial (virgin) IFSS is equivalent or enhanced by the addition of capsules and catalyst to the interface and up to 44% average recovery of IFSS is achieved in self‐healing samples after full interfacial debonding. Examination of the fracture interfaces by scanning electron microscopy reveals further evidence of a polyDCPD film in self‐healing samples. Recovery of IFSS is dictated by the bond strength of polyDCPD to the surrounding epoxy matrix.