z-logo
Premium
Fabrication and Characterization of Superhydrophobic Surfaces with Dynamic Stability
Author(s) -
Yao Xi,
Xu Liang,
Jiang Lei
Publication year - 2010
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201000013
Subject(s) - materials science , fabrication , microporous material , nanotechnology , porosity , bubble , copper , contact angle , characterization (materials science) , composite material , metallurgy , computer science , medicine , alternative medicine , pathology , parallel computing
Superhydrophobic surfaces of dynamic stability are crucial for applications in water‐repellent materials. In this work, a hierarchical structure composed of a dendritic microporous surface with nanostructured porosity is demonstrated that shows robust superhydrophobicity with dynamic stability. The hierarchical structures are obtained on both copper foils and wires by a dynamic gas‐bubble template‐assisted electrochemical deposition method. The substrates can then be modified with alkyl thiols to obtain the surface superhydrophobicity. A new kind of testing, mechanical monitor‐assisted continuous water surface strokes, is developed to reveal the dynamic stability of the as‐prepared superhydrophobic copper wires. The as‐prepared superhydrophobic copper wires can exert a high propulsive force, and particularly, show little adhesive force in the process of continuous strokes on the water surface, exhibiting robust superhydrophobicity with dynamic stability. The approach allows a strategy for the fabrication of superhydrophobic surfaces with dynamic stability, and suggests a new method to evaluate the dynamic stability of superhydrophobic surfaces.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom