z-logo
Premium
High Mechanical Performance Composite Conductor: Multi‐Walled Carbon Nanotube Sheet/Bismaleimide Nanocomposites
Author(s) -
Cheng Qunfeng,
Bao Jianwen,
Park JinGyu,
Liang Zhiyong,
Zhang Chuck,
Wang Ben
Publication year - 2009
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.200900663
Subject(s) - materials science , composite material , nanocomposite , carbon nanotube , composite number , ultimate tensile strength , electrical conductor , percolation threshold , dispersion (optics) , carbon nanotube metal matrix composites , nanotube , electrical resistivity and conductivity , physics , engineering , optics , electrical engineering
Multi‐walled carbon nanotube (MWNT)‐sheet‐reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (∼60 wt%) of aligned MWNTs are successfully fabricated. Applying simple mechanical stretching and prepregging (pre‐resin impregnation) processes on initially randomly dispersed, commercially available sheets of millimeter‐long MWNTs leads to substantial alignment enhancement, good dispersion, and high packing density of nanotubes in the resultant nanocomposites. The tensile strength and Young's modulus of the nanocomposites reaches 2 088 MPa and 169 GPa, respectively, which are very high experimental results and comparable to the state‐of‐the‐art unidirectional IM7 carbon‐fiber‐reinforced composites for high‐performance structural applications. The nanocomposites demonstrate unprecedentedly high electrical conductivity of 5 500 S cm −1 along the alignment direction. Such unique integration of high mechanical properties and electrical conductance opens the door for developing polymeric composite conductors and eventually structural composites with multifunctionalities. New fracture morphology and failure modes due to self‐assembly and spreading of MWNT bundles are also observed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here