z-logo
Premium
Unraveling Deterministic Mesoscopic Polarization Switching Mechanisms: Spatially Resolved Studies of a Tilt Grain Boundary in Bismuth Ferrite
Author(s) -
Rodriguez Brian J.,
Choudhury Samrat,
Chu Y. H.,
Bhattacharyya Abhishek,
Jesse Stephen,
Seal Katyayani,
Baddorf Arthur P.,
Ramesh R.,
Chen LongQing,
Kalinin Sergei V.
Publication year - 2009
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.200900100
Subject(s) - bismuth ferrite , mesoscopic physics , materials science , nucleation , ferroelectricity , piezoresponse force microscopy , condensed matter physics , grain boundary , polarization (electrochemistry) , multiferroics , chemical physics , microstructure , dielectric , optoelectronics , composite material , physics , chemistry , thermodynamics
The deterministic mesoscopic mechanism of ferroelectric domain nucleation is probed at a single atomically‐defined model defect: an artificially fabricated bicrystal grain boundary (GB) in an epitaxial bismuth ferrite film. Switching spectroscopy piezoresponse force microscopy (SS‐PFM) is used to map the variation of local hysteresis loops at the GB and in its immediate vicinity. It is found that the the influence of the GB on nucleation results in a slight shift of the negative nucleation bias to larger voltages. The mesoscopic mechanisms of domain nucleation in the bulk and at the GB are studied in detail using phase‐field modeling, elucidating the complex mechanisms governed by the interplay between ferroelectric and ferroelastic wall energies, depolarization fields, and interface charge. The combination of phase‐field modeling and SS‐PFM allows quantitative analysis of the mesoscopic mechanisms for polarization switching, and hence suggests a route for unraveling the mechanisms of polarization switching at a single defect level and ultimately optimizing materials properties through microstructure engineering.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here