Premium
Capacity Fading Mechanism in All Solid‐State Lithium Polymer Secondary Batteries Using PEG‐Borate/Aluminate Ester as Plasticizer for Polymer Electrolytes
Author(s) -
Kaneko Fuminari,
Wada Shinta,
Nakayama Masanobu,
Wakihara Masataka,
Koki Jun,
Kuroki Shigeki
Publication year - 2009
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.200800789
Subject(s) - materials science , plasticizer , lithium (medication) , electrolyte , chemical engineering , dielectric spectroscopy , polymer , ethylene glycol , aluminate , quasi solid , ionic conductivity , electrochemistry , boron , ethylene carbonate , electrode , composite material , cement , organic chemistry , chemistry , medicine , dye sensitized solar cell , engineering , endocrinology
Solid‐state lithium polymer secondary batteries (LPB) are fabricated with a two‐electrode‐type cell construction of Li|solid‐state polymer electrolyte (SPE)|LiFePO 4 . Plasticizers of poly(ethylene glycol) (PEG)‐borate ester (B‐PEG) or PEG‐aluminate ester (Al‐PEG) are added into lithium‐conducting SPEs in order to enhance their ionic conductivity, and lithium bis‐trifluoromethansulfonimide (LiTFSI) is used as the lithium salt. An improvement of the electrochemical properties is observed upon addition of the plasticizers at an operation temperature of 60 °C. However, a decrease of discharge capacities abruptly follows after tens of stable cycles. To understand the origin of the capacity fading, electrochemical impedance techniques, ex‐situ NMR and scanning electron microscopy (SEM)/energy dispersive X‐ray spectroscopy (EDS) techniques are adopted. Alternating current (AC) impedance measurements indicate that the decrease of capacity retention in the LPB is related to a severe increase of the interfacial resistance between the SPE and cathode. In addition, the bulk resistance of the SPE film is observed to accompany the capacity decay. Ex situ NMR studies combined with AC impedance measurements reveal a decrease of Li salt concentration in the SPE film after cycling. Ex situ SEM/EDS observations show an increase of concentration of anions on the electrode surface after cycling. Accordingly, the anions may decompose on the cathode surface, which leads to a reduction of the cycle life of the LPB. The present study suggests that a choice of Li salt and an increase of transference number is crucial for the realization of lithium polymer batteries.