z-logo
Premium
Strong, Tailored, Biocompatible Shape‐Memory Polymer Networks
Author(s) -
Yakacki Christopher M.,
Shandas Robin,
Safranski David,
Ortega Alicia M.,
Sassaman Katie,
Gall Ken
Publication year - 2008
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.200701049
Subject(s) - materials science , shape memory polymer , shape memory alloy , isothermal process , composite material , thermosetting polymer , polymer , dynamic mechanical analysis , smart material , glass transition , ethylene glycol , modulus , methacrylate , smart polymer , elastic modulus , chemical engineering , monomer , thermodynamics , physics , engineering
Shape‐memory polymers are a class of smart materials that have recently been used in intelligent biomedical devices and industrial applications for their ability to change shape under a predetermined stimulus. In this study, photopolymerized thermoset shape‐memory networks with tailored thermomechanics are evaluated to link polymer structure to recovery behavior. Methyl methacrylate (MMA) and poly(ethylene glycol) dimethacrylate (PEGDMA) are copolymerized to create networks with independently adjusted glass transition temperatures ( T g ) and rubbery modulus values ranging from 56 to 92 °C and 9.3 to 23.0 MPa, respectively. Free‐strain recovery under isothermal and transient temperature conditions is highly influenced by the T g of the networks, while the rubbery moduli of the networks has a negligible effect on this response. The magnitude of stress generation of fixed‐strain recovery correlates with network rubbery moduli, while fixed‐strain recovery under isothermal conditions shows a complex evolution for varying T g . The results are intended to help aid in future shape‐memory device design and the MMA‐ co ‐PEGDMA network is presented as a possible high strength shape‐memory biomaterial.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here